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-----------------------------------------------------ABSTRACT-----------------------------------------------------   
The stabilizing and robust  control performance condition formulated using polynomial objective constraint 

with  Relax  Linear Matrix Inequality (RLMI)  is presented in the paper. To achieve the objective  performance, 

a two part fuzzy  controller consisting of a stabilizing and robust controllers is developed, Linear Matrix 

Inequality constraint relaxed using a scaling  parameter is formulated,  the developed controller and the RLMI 

conditions were then applied for the control of  load frequency deviation  in  a single area power system 

network. Simulation results obtained, showed  that the RLMI has some merit over the so called strict LMI in 

providing better transient performance. 
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I. INTRODUCTION 
 Demand for efficient performance of the current industrial systems is growing. Control of these 

systems therefore  requires that, they be formulated for achieving  robust or  global  optimal performance. One 

optimal  concept employed for multi-objective performance  is characterized by a polynomial objective and 

constraints. Robust stabilization to parameter uncertainties,   static output feedback optimization through pole 

assignment are some of the typical examples  of  the polynomial objective constraint formulation. The major 

problem  associated with these formulations is that, in general, they are highly non-convex and solving them 

requires additional computational cost. Simplification of the non-convexity to convexity through the use of 

Linear Matrix Inequality (LMI) is currently in used. However, simplification to convex polynomial objective 

function would leads to strict or conservative constraint that is difficult to solve. The strict LMI stability 

conditions have been reported in the context of controller designs for Lurie control systems and descriptor linear 

systems using  pole placement technique in Jin-Feng et al., ( Jin-Feng et al.,2008) and  Bai et al., (Bai  et al., 

2012).  Recently, new methodologies that allow  transformation of the non-convex formulations into a convex 

polynomial time constraint  have been developed that  can easily be solved using the highly efficient interior 

point algorithm. Works on this area have been reported  (Henrion and Tarbouriech, 2002; Henrion and Lasserre, 

2003).Fuzzy systems have also been used for implementing robust and optimal control of nonlinear systems  

with high degree of success  (Taylor et al. 2006;Tanaka,Ikeda and Wang, 1998).  Example,  Wang and Sun 

(Wang and Sun, 2002)  proposed a relaxed LMI for discrete Takagi-Sugeno (T-S) fuzzy system by setting up  

rules boundaries that help reduce the number of fuzzy rules inequality solutions.  Sala and Arino (Salana and 

Arino, 2008), Narimani and Lam (Narimani and Lam, 2009) employed a membership dependent polynomials  

that would  lead to a  relax LMI conditions. Maximum fuzzy membership overlap regions were also used as the 

basis for reducing the number of rules required, thereby simplifying the determination of a feasible Lyuapunov 

P matrix  (Song-Teo, 2010).  

 

 In this article, a two part T-S fuzzy based control law consisting of a fuzzy state  feedback stabilizing 

and robust controllers is developed. LMI relaxation method that involved parameter scaling factor, selected 

from a prior knowledge of the number of fired rules would be used to formulate the polynomial objective 

constraint for determining a state feedback gain matrix.  Single area load frequency power network model would 

use as an example to test the performance of the developed controller.  

 

 

 

Takagi-Sugeno Fuzzy Model 
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We consider a nonlinear system of the form 

 

(t)  =           (1) 

 =                                                                                                                                    (2) 

 

Where ) and  are nonlinear but smooth system and input functions,  is 1 by n system state vector,   is 1 by m 

input control vector,  is 1 by p external disturbance vector,  y(t) is output,  is measurement noise. Nonlinear 

systems in practice are complex and difficult to explicitly describe  mathematically. For an n-th order  nonlinear 

system, a  T-S fuzzy model based on a qualitative expert knowledge of the system can be constructed.  In T-S 

fuzzy modeling method, a local model for a giving fuzzy  input space is defined, and so for different fuzzy input 

spaces, we have a corresponding local models.  Nonlinear interpolation between the local models produce what 

is called a global fuzzy model of the system.   Some in depth discussion on the application of the T-S fuzzy 

paradigm can be found in (Abdelkarim  et al., 2010;Machidi at al., 2008; Lee,Park and Joo, (2006). Let for the 

purpose of this paper, proposed an i-th  T-S fuzzy rule for the system in (1) and (2), as follows: 
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Where R is number of rules, )(
j

i

j
x  is i-th rule, j-th fuzzy  linguistic value . Assuming singleton fuzzifier, 

product inference and centre average defuzzification),  different methods can be adopted for obtaining  the 

defuzzified  fuzzy model   (Tanaka and Wang, 2001). 

 

Fuzzy Control Policies : In order to realize a stable and robust control policy, we assume that control policy 

consists of two parts, written as                      

                                       =   +                                      (4) 

 

Where  is the stabilizing control,   is robust control law. Following the works in (Tanaka and Sugeno, 1999; Li 

et al., 2000) we adopt the stabilizing control law as 

                                                                 xK-u
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Where , with   being the  index for number of  T-S fuzzy rules,  is the index for the number of fuzzy  control 

laws,   is strength of  a T-S fuzzy rule and can easily computed for the well known relation (Tanaka and Sugeno, 

1999), Kj is state feedback gain matrix, can also be determine from the  fuzzy state feedback control method 

known as the Parallel Distributed Control (PDC). In similar manner, we adopt a fuzzy  robust  control law 

proposed in Stanislaw, (2003), here with slight modification as follows 

         

                                        =                                                        (6)                                                  

Where  is newly introduced gain constant, B is input matrix, P is symmetric positive definite  matrix  to be 

determined. For the  number of  R  T-S fuzzy rules, we can write (6)  as, 
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It can be shown that if the control policy of  (4) is plunged into a centroid-based defuzzified  fuzzy model of (3),  

the closed loop fuzzy stable and robust fuzzy control system  can be written as,                                                
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Where q is less than or equals to R,   The closed loop system in (13) should ensure not only stable performance, 

but robust to bounded uncertain conditions.  Here we intend to determine the state feedback matrix K by solving 

a relax LMI criterion.     

                                          

 Remark 1:  If (12) is observed and the relax LMI condition being feasible, then the proof of the asymptotic 

stability of the PDC based system given in Stanislaw, 1999  also  applied to (13). 

 

 Relax  LMI Formulation : To formulate the relax LMI condition,  we write (13) considering only the first 

term on the left as, 

                                         

                                          

                                              x                                                                                          (9)                                            

Where 

                                                =     (  

 

Based on (9) , Tanaka and Wang (Tanaka and Wang, 2001) proposed  the following theorem: 

Theorem: (Tanaka and Wang, 2001): The equilibrium of a fuzzy control system described by (8) is globally 

asymptotically stable if there exist a common positive definite matrix P such that  

 

                                   P + P   <  0            (10) 

                                         0                                                                                 (11) 

                                                                        

 

Where     .  

 

 

Condition (11) is also true only when i-th and j-th rules overlapped. Of course (10) and (11) applies to strict 

LMI stability conditions. If we consider that some rule weights  are  inactive (not fired), and take number of 

rules that fire as   s  ( 1< s  R ), then the result of the relax LMI criterion can be written as  

 

                                    P + P  +  (s-1)Q   <  0           (12) 

                                       -  Q     0                (13)                                                                       

                                                                        

 

Where P is feasible  positive definite matrix to be determined, Q is matrix to be chosen. Following the process 

proposed in (Tanaka and Wang, 2001), the basic results of the relax LMI are as follows:  
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      >  0                (14) 

         0                                     (15) 

   >    0            (16) 

Y       0                                                                                                                                                              (17) 

 

The relax LMIs in (14)-(17) are to be  solved for  X,  and  Y. So that the feasible matrix P and state feedback 

matrix Ki can be calculated as follows: 

 

         P  =                                                                                                                                                       (18) 

       Ki  =   .                                                                                                                                              (19) 

                                                
 

                                          

Application Example 

 

 For purpose of verifying the validity of the remark1 above, we consider a single area power system load 

frequency model, here represented by its  nominal  linear model (Sadat, 1999)  as, 
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Where x1, x2 are the states of the system representing rotor angle  and the  frequency, respectively, PL is  per 

unit input load change , n and   are natural frequency and damping constants expressed as,  
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Where D is the damping constant,  H  is the per unit inertia constant,  Ps is the synchronizing power coefficient,  

fo is the operating frequency in Hz.  We next, develop the system  T-S fuzzy model.  

 

 

II. T-S FUZZY MODEL OF THE SYSTEM 
For each  input state,  we assign two fuzzy membership values as, 

 

                                 =    

                                   =   

 

We propose a four rules T-S fuzzy system as follows: 
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Remark 1: The fuzzy membership function to be use is center type triangular mathematically expressed as,                                           
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Where c and w are the center and width of the  triangular membership function. 

 Simulation  

To specify fuzzy system parameters, let the machine parameters be assigned as shown  in Table 1. 

Table 1: System Parameters  

Electrical Mechanical 

V = 1.0 p.u. fo = 50Hz 

X = 0.65 p.u. H = 8.89MJ/MVA 

Eo = 1.35 p.u. (max. gen. emf) D = 0.138 

cos = 0.8 o = 0.29304rad 

Giving the following relations (Sadat, 1999):   
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Using (22) and (23),  Ps = 1.9884,  n  = 5.93rad/s and  = 13.25 respectively.  At  load  deviations (
L

P ) of  

0.8 and 0.87 p.u. we have   = 5.0 and   = 15.0. Using a numerical simulation on (25) and (26) for transient step 

responses the universal  range of the states are obtained as      =     .  

Having the two  elements as        ( ) =   and    =        

The  triangular membership function of  Fig.1 parameters  and the selected operating points for the system are  

shown in Table 2  

Table 2: Fuzzy System Parameters 

 

States Centers of triangular membership 

functions 

Operating Points 

x1 = [0.1   0.36] 1

1
  = [0.0   0.125   0.25] 

1
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Where    is selected operating point  ( ). The following simulation stages are to be carried out: 

[1] Formulate the power network T-S fuzzy model  in line with (9) 

[2] Formulating the relax LMI conditions in line with (14)-(17) and solving for (18) –(19) in Matlab LMI 

toolbox. 

[3] Finally using Matlab control toolbox, solving (9) for step dynamic response of the robust fuzzy 

controlled system. 

          

Simulation Cases 

The robust performance  test on the closed loop power network will be  carry out under the following cases: 

CASE 1: Under the action of conventional optimal PID controller  

CASE 2: Under a strict LMI conditions as reported  in  Shehu and Dan-Isa (Shehu and Dan-Isa, 2011) 

CASE 3: Under the relax LMI conditions  

All  simulations are to be performed under varying system parameters shown in Table 3.  
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Table 3: Generator Parameter Adjustments 

 

SN Damping Constant D Synchronous Power Coeff. Ps  

1. 0.1380 1.9884 

2 0.0138 1.9884 

3 0.0138 -1.9884 

   

III. RESULTS 
  With optimal PID controller,  rotor angle deviation  from 17.0 p.u step load  change and load frequency 

deviation from  50Hz operating  frequency  are obtained as shown in  Fig.1.   

CASE 1: Results 

                                                      

(a)  

 
(b) 

 
(c) 

       Fig. 1: Optimal PID Control (a) Angle and Frequency Deviations at D = 0.138 and Ps  

                                        =1.9884 (b) At D = 0.0138, Ps = 1.9884 (c) At D = 0.138 and Ps = -1.9884 

 

CASE 2 Results: Strict LMI 

 

 
(a) 
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(b) 

 
(c) 

               Fig. 2: LMI Based Robust Fuzzy Control (a) Angle and Frequency Deviations at D =  0.13 and Ps =       

               1.9884 (b) At D = 0.0138 and Ps = 1.9884 (c) At D = 0.138 and Ps =  -1.9884 

 

CASE 3 Results: Strict and relax LMI  at D = 0.00138, Ps = -1.9884                         

                           

 
                                                                                           (a) 

 
                                                                                             (b)         

     Fig.3: Rotor Angle and Frequency Responses Under Strict and Relax LMI Stability Robust Fuzzy Control at        

     D = 0.00138, Ps = -1.9884  (a) Responses Under Strict Condition  (b) Under Relax LMI Condition 

 

IV. DISCUSSION OF RESULTS 
 With optimal conventional PID controller, stable and robust performances were shown to be achieved 

only at nominal parameter condition, as demonstrated in Fig.1(a). It is sensitive to mild parameter changes 

(shown in Fig..12(b)) and unstable at worst case parameter conditions as shown in Fig.1(c). With fuzzy robust 

control, employing strict LMI criterion, stable and robust performances were achieved even at worst case 

system’s parameters variation as obtained in responses shown in Fig.2(a)-(c). Fig.3 is a comparison result, of the 

robust fuzzy control performance with strict and relax LMI conditions, at even further reduced damping 

constant (D = 0.00138, Ps = -1.9884). Though, in both situations, stable and robust performances were achieved, 

better transient performance in terms of speed of response was achieved when  under relax LMI condition, as 

shown in Fig.3(b). Realizing a preset rotor angle value at 450 seconds simulation time compared with about 

2000 seconds with strict LMI.  

 

 

V. CONCLUSION 
 In the paper, a method for maintaining   robust stability of a parameter disturbed load frequency single 

machine power system network was proposed. The method is a fuzzy state feedback control conditioned using 

an LMI  relaxation  constraint  that was easily implemented using available numerical tools. One of the good 

function of a relax LMI stability constraint is allowing easy determination of a common P and hence, K  gain 

matrices for realizing  the PDC scheme, when large number of T-S fuzzy rules are involved. In the paper, the 

relax LMI based robust fuzzy controller was designed. First conventional optimal PID control was shown to 

give good performance only under nominal parameter perturbations. Robust fuzzy control with strict and relax 

LMIs were shown to give stable and robust performances. Further improved performance in terms of speed of 
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response was shown to be realized  when relax LMI conditions are involved.  The result of the  relax LMI 

constraint obtained  here, demonstrated that, not only  reduced  number fuzzy rules can be achieved  by adopting  

the method as reported by most of works reviewed in the paper, but good transient performance can also be 

achieved.  
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